Upper bounds for query complexity inspired by the Elitzur-Vaidman bomb tester

Cedric Yen-Yu Lin, Han-Hsuan Lin

Center for Theoretical Physics MIT

QIP 2015 January 12, 2015

arXiv:1410.0932

Overview

- Bomb Query Complexity
 - Elitzur-Vaidman bomb tester
 - Bomb query complexity B(f)
 - Main result: $B(f) = \Theta(Q(f)^2)$
- Algorithms
 - Introduction: O(N) bomb query algorithm for OR
 - Main theorem 2: constructing q. algorithms from c. ones
 - Applications: graph problems
- Summary and open problems

Section 1

Bomb Query Complexity

Elitzur-Vaidman Bomb Tester [EV93]

A collection of bombs, some of which are duds

Live: Explodes on contact with photon

Dud: No interaction with photon

Can we tell them apart without blowing ourselves up?

Elitzur-Vaidman Bomb Tester [EV93]

We can put a bomb in an Mach-Zehnder interferometer:

If D2 detects a photon, then we know the bomb is live, even though it has not exploded.

Image source: A. G. White et al., PRA 58, 605 (1998).

EV bomb in circuit model

We can rewrite the Elitzur-Vaidman bomb in the circuit model:

Live bomb: *X* in the above diagram

Dud: I in the above diagram

Let
$$R(\theta) = \exp(i\theta X) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
.

 $\pi/(2\theta)$ times in total

Let
$$R(\theta) = \exp(i\theta X) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
.

If dud: Ctrl-*I* does nothing, so $|0\rangle$ gets rotated to $|1\rangle$.

Let
$$R(\theta) = \exp(i\theta X) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
.

If live: First register is projected back to $|0\rangle$ on each measurement.

Probability of explosion: $\Theta(\theta^2) \times \Theta(1/\theta) = \Theta(\theta)$.

Let
$$R(\theta) = \exp(i\theta X) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
.

Probability of explosion: $\Theta(\theta)$

Number of queries: $\Theta(1/\theta)$

Quantum Query

Quantum query

Quantum Query vs Bomb Query

Quantum query

Bomb query

Bomb Query

Differences from quantum query:

- Extra control register c.
- The record register, where we store the query result, must contain 0 as input.
- We must measure the query result after each query;
 if the result is 1, the bomb explodes and the algorithm fails.

Bomb Query

equivalent to

$$|c\rangle \longrightarrow |c\rangle$$
 $|i\rangle \longrightarrow P_{x,0} \longrightarrow (1-c\cdot x_i)|i\rangle$

where

$$P_{x,0} = \sum_{x_i=0} |i\rangle\langle i|, \quad \operatorname{Ctrl} - P_{x,0} = I - \sum_{x_i=1} |1,i\rangle\langle 1,i|$$

Bomb Query Complexity

Call the minimum number of bomb queries needed to determine f with bounded error, with probability of explosion $\leq \epsilon$, the bomb query complexity $B_{\epsilon}(f)$.

Main Theorem

Theorem

$$B_{\epsilon}(f) = \Theta(Q(f)^2/\epsilon).$$

Upper bound: Quantum Zeno effect.

Lower bound: Adversary method.

$B_{\epsilon}(f) = O(Q(f)^2/\epsilon)$: Proof

We can simulate each quantum query using $\Theta(1/\theta)$ bomb queries:

Total probability of explosion: $\Theta(\theta) \cdot Q(f) = \Theta(\epsilon)$, if $\theta = \Theta(\epsilon/Q(f))$.

Total number of bomb queries: $\Theta(1/\theta) \cdot Q(f) = O(Q(f)^2/\epsilon)$.

$B_{\epsilon}(f) = \Omega(Q(f)^2/\epsilon)$: Proof

The proof uses the general-weight adversary method [HLS07]. We know [Rei09,Rei11,LMR+11] that the general-weight adversary bound tightly characterizes quantum query complexity: $Adv^{\pm}(f) = \Theta(Q(f))$.

By modifying the proof of the general-weight adversary bound, we can show that $B_{\epsilon}(f) = \Omega(\mathsf{Adv}^{\pm}(f)^2/\epsilon)$.

This implies that $B_{\epsilon}(f) = \Omega(Q(f)^2/\epsilon)$.

Section 2

Algorithms

O(N) Bomb Query Algorithm for OR

There are *N* bombs, want to check if any are live.

Check each bomb using $\Theta(\epsilon^{-1})$ queries, or $O(N/\epsilon)$ queries in total.

Each live bomb has $\Theta(\epsilon)$ chance of exploding. Each dud has no chance of exploding.

Since we can stop at the first live bomb, the total chance of failure is only $\Theta(\epsilon)$. Therefore $B_{\epsilon}(OR) = O(N/\epsilon)$.

Since
$$B(OR) = O(N)$$
, $Q(OR) = O(\sqrt{N})$.

This is a nonconstructive proof of the existence of Grover's algorithm!

Can we generalize this further?

Main Theorem 2

Theorem

Suppose there is a classical randomized algorithm $\mathcal A$ that computes f(x) using at most T queries. Moreover, suppose there is an algorithm $\mathcal G$ that predicts the results of each query $\mathcal A$ makes (0 or 1), making at most an expected $\mathcal G$ mistakes.

Then B(f) = O(TG), and $Q(f) = O(\sqrt{TG})$.

Main Theorem 2

Theorem

Suppose there is a classical randomized algorithm \mathcal{A} that computes f(x) using at most T queries. Moreover, suppose there is an algorithm \mathcal{G} that predicts the results of each query \mathcal{A} makes (0 or 1), making at most an expected \mathcal{G} mistakes.

Then B(f) = O(TG), and $Q(f) = O(\sqrt{TG})$.

For example, for OR we have T = N and G = 1, so $Q(f) = O(\sqrt{N})$.

Bomb algorithm with B(f) = O(TG)

For each classical query, check whether \mathcal{G} correctly predicts the query result of \mathcal{A} using $\Theta(G/\epsilon)$ bomb queries.

If \mathcal{G} guesses incorrectly then the probability of explosion is $O(\epsilon/G)$; otherwise it is zero. (This actually requires defining an equivalent symmetric variant of the bomb query complexity.)

The total probability of explosion is $O(\epsilon/G) \cdot G = O(\epsilon)$, and the number of bomb queries used is $O(G/\epsilon) \cdot T = O(TG/\epsilon)$.

- Repeat until all queries of A are determined:
 - ① Use $\mathcal G$ to predict all remaining queries of $\mathcal A$, under assumption it makes no mistakes.
 - Search for the location d_j of first mistake, using $O(\sqrt{d_j d_{j-1}})$ quantum queries.
 - This determines the actual query results up to the d_j -th query that \mathcal{A} would have made.

Kothari's algorithm for oracle identification [Kot14] actually already uses these steps above.

- Repeat until all queries of A are determined:
 - Use \mathcal{G} to predict all remaining queries of \mathcal{A} , under assumption it makes no mistakes.
 - ② Find the location d_j of first mistake, using $O(\sqrt{d_j d_{j-1}})$ queries to the black box.
 - This determines the actual query results up to the d_j -th query that \mathcal{A} would have made.

i	2	5	4	3	12	7	6	9	10
x_i	0	1	1	0	1	1	0	0	1

- Repeat until all queries of A are determined:
 - Use \mathcal{G} to predict all remaining queries of \mathcal{A} , under assumption it makes no mistakes.
 - ② Find the location d_j of first mistake, using $O(\sqrt{d_j d_{j-1}})$ queries to the black box.
 - This determines the actual query results up to the d_j -th query that \mathcal{A} would have made.

i	2	5	4	3	12	7	6	9	10	
x_i	0	1	1	1	1	1	0	0	1	

- Repeat until all queries of A are determined:
 - Use \mathcal{G} to predict all remaining queries of \mathcal{A} , under assumption it makes no mistakes.
 - ② Find the location d_j of first mistake, using $O(\sqrt{d_j d_{j-1}})$ queries to the black box.
 - This determines the actual query results up to the d_i -th query that A would have made.

- Repeat until all queries of A are determined:
 - Use \mathcal{G} to predict all remaining queries of \mathcal{A} , under assumption it makes no mistakes.
 - ② Find the location d_j of first mistake, using $O(\sqrt{d_j d_{j-1}})$ queries to the black box.
 - This determines the actual query results up to the d_j -th query that A would have made.

i	2	5	4	3	10	1	15	7	13	
x_i	0	1	1	1	0	0	1	0	1	

- Repeat until all queries of A are determined:
 - Use \mathcal{G} to predict all remaining queries of \mathcal{A} , under assumption it makes no mistakes.
 - 2 Find the location d_j of first mistake, using $O(\sqrt{d_j d_{j-1}})$ queries to the black box.
 - This determines the actual query results up to the d_j -th query that \mathcal{A} would have made.

i	2	5	4	3	10	1	15	7	13	
x_i	0	1	1	1	0	1	1	0	1	

- Repeat until all queries of A are determined:
 - Use \mathcal{G} to predict all remaining queries of \mathcal{A} , under assumption it makes no mistakes.
 - ② Find the location d_j of first mistake, using $O(\sqrt{d_j d_{j-1}})$ queries to the black box.
 - **3** This determines the actual query results up to the d_i -th query that \mathcal{A} would have made.

i	2	5	4	3	10	1		
x_i	0	1	1	1	0	1		

- Repeat until all queries of A are determined:
 - ① Use \mathcal{G} to predict all remaining queries of \mathcal{A} , under assumption it makes no mistakes.
 - ② Find the location d_j of first mistake, using $O(\sqrt{d_j d_{j-1}})$ queries to the black box.
 - This determines the actual query results up to the d_j -th query that \mathcal{A} would have made.

Query complexity: $O(G) \cdot O(\sqrt{T/G}) = O(\sqrt{TG})$. It looks like error reduction may give extra log factors, but [Kot14] showed that the log factors can be removed using span programs.

Applications: Breadth First Search

Problem: Unweighted Single-Source Shortest Paths

Given the adjacency matrix of an unweighted graph as a black box, find the distances from a vertex *s* to all other vertices.

Classical algorithm: Breadth First Search.

Breadth First Search

- Initialize an array *dist* that will hold the distances of the vertices from s. Set dist[s] := 0, and $dist[v] := \infty$ for $v \neq s$.
- 2 For $d = 1, \dots, n-1$:
 - For all vertices v with dist[v] = d 1, query its outgoing edges (v, w) to all vertices w whose distance we don't know $(dist[w] = \infty)$. If (v, w) is an edge, set dist[w] := d.

BFS: Quantum Query Complexity

Breadth First Search

- Initialize an array *dist* that will hold the distances of the vertices from s. Set dist[s] := 0, and $dist[v] := \infty$ for $v \neq s$.
- 2 For $d = 1, \dots, n-1$:
 - For all vertices v with dist[v] = d 1, query its outgoing edges (v, w) to all vertices w whose distance we don't know $(dist[w] = \infty)$. If (v, w) is an edge, set dist[w] := d.

Worst case query complexity is $T = O(n^2)$, where n is no. of vertices. If we guess that each queried pair (v, w) is not an edge, then we make at most G = n - 1 mistakes, since each vertex is only discovered once.

 $Q(uSSSP) = O(\sqrt{TG}) = O(n^{3/2})$, matches lower bound of [DHH+04].

Applications: *k*-Source Shortest Paths

What if we instead want the distances from *k* different sources?

Problem: Unweighted k-Source Shortest Paths

Given the adjacency matrix of an unweighted graph as a black box, find the distances from vertices s_1, \dots, s_k to all other vertices.

Classical: Run BFS k times.

Quantum: G = k(n-1), but $T = O(n^2)$ instead of $O(kn^2)$. Therefore $Q(kSSP) = O(k^{1/2}n^{3/2})$.

Dhariwal and Mayar showed tight lower bound; available on S. Aaronson's blog, Dec. 26, 2014: http://www.scottaaronson.com/blog/?p=2109

Applications: Maximum Bipartite Matching

Problem: Maximum Bipartite Matching

A *matching* in an undirected graph is a set of edges that do not share vertices. Given a bipartite graph, find a matching with the maximum possible number of edges.

Classical algorithm: Hopcroft-Karp algorithm.

Essentially proceeds by using $O(\sqrt{n})$ rounds of BFS and modified DFS (depth-first search).

Quantum: $G = O(\sqrt{n} \times n) = O(n^{3/2})$, and $T = O(n^2)$ (not $O(n^{2.5})$). Therefore $Q(MBM) = O(n^{7/4})$. First nontrivial upper bound!

Summary

• Inspired by the EV bomb tester, we defined the notion of *bomb* query complexity, and showed the relation $B(f) = \Theta(Q(f)^2)$.

• Bomb query complexity further lead us to a general construction of quantum query algorithms from classical algorithms, giving us an $O(n^{1.75})$ quantum query algorithm for maximum bipartite matching.

Open Questions

- Can we relate G, the number of wrong guesses, to classical measures of query complexity (e.g. certificate, sensitivity...)?
- Time complexity of algorithms?
- Algorithms for adjacency list model?
- Other problems e.g. matching for general graphs?
- Relationship between R(f) and B(f)?

Relationship between R(f) and B(f)?

For total functions the largest known separation between R(f) and Q(f) is quadratic (for the OR function).

It is conjectured this is the extreme case, $R(f) = O(Q(f)^2)$.

We know that $B(f) = \Theta(Q(f)^2)$. Therefore the conjecture is equivalent to R(f) = O(B(f)).

We give some motivation for why this conjecture might be true...

Projective Query Complexity, P(f)

Aaronson (unpublished, 2002) considered allowing access to the black box only with the following:

$$|c\rangle$$
 $|c\rangle$ $|c\rangle$ $|c\rangle$ $|i\rangle$ $|i\rangle$

We call the number of queries required the *projective query* complexity, P(f). Note the algorithm does *not* end on measuring a 1.

Straightforwardly $Q(f) \le P(f) \le R(f)$ and $P(f) \le B(f)$. Regev and Schiff [RS08]: $P(OR) = \Omega(N)$.

Open question: Does $P(f) = \Theta(R(f))$ for all total functions? If this is true, implies $R(f) = O(B(f)) = O(Q(f)^2)$.

Thank You!