
Upper bounds for query complexity inspired by the
Elitzur-Vaidman bomb tester

Cedric Yen-Yu Lin, Han-Hsuan Lin

Center for Theoretical Physics
MIT

QIP 2015
January 12, 2015

arXiv:1410.0932

Cedric Lin, Han-Hsuan Lin (MIT) Upper bounds inspired by EV bomb tester January 12, 2015 1 / 39



Overview

1 Bomb Query Complexity
Elitzur-Vaidman bomb tester
Bomb query complexity B(f )
Main result: B(f ) = Θ(Q(f )2)

2 Algorithms
Introduction: O(N) bomb query algorithm for OR
Main theorem 2: constructing q. algorithms from c. ones
Applications: graph problems

3 Summary and open problems

Cedric Lin, Han-Hsuan Lin (MIT) Upper bounds inspired by EV bomb tester January 12, 2015 2 / 39



Section 1

Bomb Query Complexity
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Elitzur-Vaidman Bomb Tester [EV93]

A collection of bombs, some of which are duds

Live: Explodes on contact with photon
Dud: No interaction with photon

Can we tell them apart without blowing ourselves up?
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Elitzur-Vaidman Bomb Tester [EV93]

We can put a bomb in an Mach-Zehnder interferometer:

If D2 detects a photon, then we know the bomb is live, even though it
has not exploded.
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Image source: A. G. White et al., PRA 58, 605 (1998).



EV bomb in circuit model

We can rewrite the Elitzur-Vaidman bomb in the circuit model:

•
|0〉 I or X explode if 1

Live bomb: X in the above diagram

Dud: I in the above diagram

Cedric Lin, Han-Hsuan Lin (MIT) Upper bounds inspired by EV bomb tester January 12, 2015 6 / 39



Quantum Zeno Effect [KWH+95]

Let R(θ) = exp(iθX ) =

(
cos θ − sin θ
sin θ cos θ

)
.

|0〉 R(θ) • R(θ) •

|0〉 I or X
. . .

|0〉 I or X

π/(2θ) times in total

Cedric Lin, Han-Hsuan Lin (MIT) Upper bounds inspired by EV bomb tester January 12, 2015 7 / 39



Quantum Zeno Effect [KWH+95]

Let R(θ) = exp(iθX ) =

(
cos θ − sin θ
sin θ cos θ

)
.

|0〉 R(θ) • R(θ) • |1〉

|0〉 I
. . .

|0〉 I

π/(2θ) times in total

If dud: Ctrl-I does nothing, so |0〉 gets rotated to |1〉.
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Quantum Zeno Effect [KWH+95]

Let R(θ) = exp(iθX ) =

(
cos θ − sin θ
sin θ cos θ

)
.

|0〉 R(θ) • R(θ) • |0〉

|0〉 X
. . .

|0〉 X

π/(2θ) times in total

If live: First register is projected back to |0〉 on each measurement.

Probability of explosion: Θ(θ2)×Θ(1/θ) = Θ(θ).

Cedric Lin, Han-Hsuan Lin (MIT) Upper bounds inspired by EV bomb tester January 12, 2015 9 / 39



Quantum Zeno Effect [KWH+95]

Let R(θ) = exp(iθX ) =

(
cos θ − sin θ
sin θ cos θ

)
.

|0〉 R(θ) • R(θ) •

|0〉 I or X
. . .

|0〉 I or X

π/(2θ) times in total

Probability of explosion: Θ(θ)

Number of queries: Θ(1/θ)
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Quantum Query

vs Bomb Query

Quantum query

|r〉
Ox

|r ⊕ xi〉
|i〉 |i〉

Bomb query

|c〉 • |c〉
|0〉

Ox
bomb explodes if c · xi = 1

|i〉 |i〉
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Bomb Query

|c〉 • |c〉
|0〉

Ox
bomb explodes if c · xi = 1

|i〉 |i〉

Differences from quantum query:
Extra control register c.
The record register, where we store the query result,
must contain 0 as input.
We must measure the query result after each query;
if the result is 1, the bomb explodes and the algorithm fails.
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Bomb Query
|c〉 • |c〉
|0〉

Ox
bomb explodes if c · xi = 1

|i〉 |i〉

equivalent to

|c〉 • |c〉
|i〉 Px ,0 (1− c · xi)|i〉

where

Px ,0 =
∑
xi=0

|i〉〈i |, Ctrl− Px ,0 = I −
∑
xi=1

|1, i〉〈1, i |
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Bomb Query Complexity

U0

•

U1

•

U2

•

U3

Px ,0 Px ,0 Px ,0

. . .

Call the minimum number of bomb queries needed to determine f with
bounded error, with probability of explosion ≤ ε, the bomb query
complexity Bε(f ).
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Main Theorem

Theorem

Bε(f ) = Θ(Q(f )2/ε).

Upper bound: Quantum Zeno effect.

Lower bound: Adversary method.
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Bε(f ) = O(Q(f )2/ε): Proof

We can simulate each quantum query using Θ(1/θ) bomb queries:

|r〉 X |r ⊕ xi〉

|0〉 R(θ) • • R(−θ) • |0〉 (discard)

|i〉 Px ,0 Px ,0 |i〉

repeat π/2θ times repeat π/2θ times

Total probability of explosion: Θ(θ) ·Q(f ) = Θ(ε), if θ = Θ(ε/Q(f )).

Total number of bomb queries: Θ(1/θ) ·Q(f ) = O(Q(f )2/ε).
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Bε(f ) = Ω(Q(f )2/ε): Proof

The proof uses the general-weight adversary method [HLS07].
We know [Rei09,Rei11,LMR+11] that the general-weight adversary
bound tightly characterizes quantum query complexity:
Adv±(f ) = Θ(Q(f )).

By modifying the proof of the general-weight adversary bound, we can
show that Bε(f ) = Ω(Adv±(f )2/ε).

This implies that Bε(f ) = Ω(Q(f )2/ε).

Cedric Lin, Han-Hsuan Lin (MIT) Upper bounds inspired by EV bomb tester January 12, 2015 17 / 39



Section 2

Algorithms
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O(N) Bomb Query Algorithm for OR

There are N bombs, want to check if any are live.

Check each bomb using Θ(ε−1) queries, or O(N/ε) queries in total.

Each live bomb has Θ(ε) chance of exploding.
Each dud has no chance of exploding.

Since we can stop at the first live bomb, the total chance of failure is
only Θ(ε). Therefore Bε(OR) = O(N/ε).
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Since B(OR) = O(N), Q(OR) = O(
√

N).

This is a nonconstructive proof of the existence of Grover’s algorithm!

Can we generalize this further?
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Main Theorem 2

Theorem
Suppose there is a classical randomized algorithm A that computes
f (x) using at most T queries. Moreover, suppose there is an algorithm
G that predicts the results of each query A makes (0 or 1), making at
most an expected G mistakes.

Then B(f ) = O(TG), and Q(f ) = O(
√

TG).

For example, for OR we have T = N and G = 1, so Q(f ) = O(
√

N).
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Bomb algorithm with B(f ) = O(TG)

For each classical query, check whether G correctly predicts the query
result of A using Θ(G/ε) bomb queries.

If G guesses incorrectly then the probability of explosion is O(ε/G);
otherwise it is zero. (This actually requires defining an equivalent
symmetric variant of the bomb query complexity.)

The total probability of explosion is O(ε/G) ·G = O(ε), and the number
of bomb queries used is O(G/ε) · T = O(TG/ε).
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Explicit q. algorithm with Q(f ) = O(
√

TG)

Repeat until all queries of A are determined:

1 Use G to predict all remaining queries of A, under assumption it
makes no mistakes.

2 Search for the location dj of first mistake, using O(
√

dj − dj−1)
quantum queries.

3 This determines the actual query results up to the dj -th query that
A would have made.

Kothari’s algorithm for oracle identification [Kot14] actually already
uses these steps above.
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Explicit q. algorithm with Q(f ) = O(
√

TG)

Repeat until all queries of A are determined:

1 Use G to predict all remaining queries of A, under assumption it
makes no mistakes.

2 Find the location dj of first mistake, using O(
√

dj − dj−1) queries to
the black box.

3 This determines the actual query results up to the dj -th query that
A would have made.
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Explicit q. algorithm with Q(f ) = O(
√

TG)

Repeat until all queries of A are determined:

1 Use G to predict all remaining queries of A, under assumption it
makes no mistakes.

2 Find the location dj of first mistake, using O(
√

dj − dj−1) queries to
the black box.

3 This determines the actual query results up to the dj -th query that
A would have made.
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Explicit q. algorithm with Q(f ) = O(
√

TG)

Repeat until all queries of A are determined:

1 Use G to predict all remaining queries of A, under assumption it
makes no mistakes.

2 Find the location dj of first mistake, using O(
√

dj − dj−1) queries to
the black box.

3 This determines the actual query results up to the dj -th query that
A would have made.

Query complexity: O(G) ·O(
√

T/G) = O(
√

TG).
It looks like error reduction may give extra log factors, but [Kot14]
showed that the log factors can be removed using span programs.
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Applications: Breadth First Search

Problem: Unweighted Single-Source Shortest Paths
Given the adjacency matrix of an unweighted graph as a black box,
find the distances from a vertex s to all other vertices.

Classical algorithm: Breadth First Search.

Breadth First Search
1 Initialize an array dist that will hold the distances of the vertices

from s. Set dist [s] := 0, and dist [v ] :=∞ for v 6= s.
2 For d = 1, · · · ,n − 1:

1 For all vertices v with dist [v ] = d − 1, query its outgoing edges
(v ,w) to all vertices w whose distance we don’t know
(dist [w ] =∞). If (v ,w) is an edge, set dist [w ] := d .
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BFS: Quantum Query Complexity

Breadth First Search
1 Initialize an array dist that will hold the distances of the vertices

from s. Set dist [s] := 0, and dist [v ] :=∞ for v 6= s.
2 For d = 1, · · · ,n − 1:

1 For all vertices v with dist [v ] = d − 1, query its outgoing edges
(v ,w) to all vertices w whose distance we don’t know
(dist [w ] =∞). If (v ,w) is an edge, set dist [w ] := d .

Worst case query complexity is T = O(n2), where n is no. of vertices.
If we guess that each queried pair (v ,w) is not an edge, then we make
at most G = n− 1 mistakes, since each vertex is only discovered once.

Q(uSSSP) = O(
√

TG) = O(n3/2), matches lower bound of [DHH+04].
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Applications: k -Source Shortest Paths

What if we instead want the distances from k different sources?

Problem: Unweighted k -Source Shortest Paths
Given the adjacency matrix of an unweighted graph as a black box,
find the distances from vertices s1, · · · , sk to all other vertices.

Classical: Run BFS k times.

Quantum: G = k(n − 1), but T = O(n2) instead of O(kn2).
Therefore Q(kSSP) = O(k1/2n3/2).

Dhariwal and Mayar showed tight lower bound;
available on S. Aaronson’s blog, Dec. 26, 2014:
http://www.scottaaronson.com/blog/?p=2109
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Applications: Maximum Bipartite Matching

Problem: Maximum Bipartite Matching
A matching in an undirected graph is a set of edges that do not share
vertices. Given a bipartite graph, find a matching with the maximum
possible number of edges.

Classical algorithm: Hopcroft-Karp algorithm.
Essentially proceeds by using O(

√
n) rounds of BFS and modified

DFS (depth-first search).

Quantum: G = O(
√

n × n) = O(n3/2), and T = O(n2) (not O(n2.5)).
Therefore Q(MBM) = O(n7/4). First nontrivial upper bound!
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Summary

Inspired by the EV bomb tester, we defined the notion of bomb
query complexity, and showed the relation B(f ) = Θ(Q(f )2).

Bomb query complexity further lead us to a general construction
of quantum query algorithms from classical algorithms, giving us
an O(n1.75) quantum query algorithm for maximum bipartite
matching.
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Open Questions

Can we relate G, the number of wrong guesses, to classical
measures of query complexity (e.g. certificate, sensitivity...)?

Time complexity of algorithms?
Algorithms for adjacency list model?
Other problems e.g. matching for general graphs?

Relationship between R(f ) and B(f )?
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Relationship between R(f ) and B(f )?

For total functions the largest known separation between R(f ) and
Q(f ) is quadratic (for the OR function).
It is conjectured this is the extreme case, R(f ) = O(Q(f )2).

We know that B(f ) = Θ(Q(f )2).
Therefore the conjecture is equivalent to R(f ) = O(B(f )).

We give some motivation for why this conjecture might be true...
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Projective Query Complexity, P(f )

Aaronson (unpublished, 2002) considered allowing access to the black
box only with the following:

|c〉 • |c〉
|0〉

Ox

c · xi

|i〉 |i〉

We call the number of queries required the projective query
complexity, P(f ). Note the algorithm does not end on measuring a 1.

Straightforwardly Q(f ) ≤ P(f ) ≤ R(f ) and P(f ) ≤ B(f ).
Regev and Schiff [RS08]: P(OR) = Ω(N).

Open question: Does P(f ) = Θ(R(f )) for all total functions?
If this is true, implies R(f ) = O(B(f )) = O(Q(f )2).
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Thank You!
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